

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Title: Welcome!

Hi, and welcome to the online documentation for Remora.Discord! Here, you’ll
find everything you need to get started with the library - tutorials, API
references, and more.

To get started as a new user, it’s recommended to check out
[Getting Started][1], where we’ll go through setting up a basic bot with the
library.

If you’re interested in contributing to the library, great! The best place to
start is by reading through the [contribution guidelines][2]. After that, check
out available and open issues on [GitHub][3], or come up with an idea of your
own.

	## Quick Reference
	
	[API Documentation][4]

	[Getting Started][1]

	[Using Undocumented Features][6]

	[Project README][5]

[1]: guides/getting-started
[2]: github-info/CONTRIBUTING
[3]: https://www.github.com/Nihlus/Remora.Discord/issues
[4]: api
[5]: info/README
[6]: guides/undocumented-features

Contributing

Welcome to Remora.Discord’s contributing guidelines! I’m glad you’ve decided to read this document, and I hope that
it’ll be helpful in any contributions you make to the library.

Generally, this document will serve to give you some background on design choices made in the library, as well as
to highlight things to be aware of while developing new features or fixing bugs. If there are any questions or
irregularities that can’t be answered by this document, open an issue and ask for assistance - I’ll do my best to
clarify and answer.

Table of Contents
1. [Goals](#1-goals)

	[Correctness](#11-correctness)

	[Robustness](#12-robustness)

	[True Asynchronicity and Concurrency](#13-true-asynchronicity-and-concurrency)

	[Structure](#2-structure)

	[How to Contribute](#3-how-to-contribute)

	[Tips & Tricks](#4-tips–tricks)

1. Goals
To understand many of the design choices, you must first understand the three pillar goals of Remora.Discord, and why
they are the way they are. Remora.Discord originates from the original author’s frustration with many inconsistencies
in various APIs in the C#/Discord ecosystem, both in relation to the Discord API itself and the language usage within
existing solutions. The goals below were set early in the development process to guide development away from these
problems, and to find parts of the user experience that should be placed at the forefront of the library.

Therefore, Remora.Discord defines the following three goals.

1.1 Correctness
Correctness, in the context of Remora.Discord, means that the API available to the end user should as faithfully and
accurately represent the actual reality of data presented to or from an API; that is, no data or structure of data
should meaningfully change between the library receiving it and the user accessing it.

As an example, Discord sometimes sends what they refer to as “partial” objects, while still defining the data entities
as having fields not transmitted in partial objects as required. Remora.Discord interprets this as an error in Discord’s
API documentation and implements these fields as optional, thus providing a “correct” view of the data.

1.2 Robustness
Robustness refers to a focus on never allowing problems originating from user data or real-life runtime conditions to
bring down or otherwise corrupt the end user’s application. The end user should be confident that, should an error
arise, they will be aware of the fault potential before even compiling the application.

Any method that has a fault potential should be declared in such a way that the user must consider whether the operation
was successful before proceeding. To this end, Remora.Discord further breaks issues down into the following categories:

	Programmer errors

	User errors

	Environment errors

Programmer errors are caused by incorrect, invalid, or inappropriate use of Remora.Discord’s API that cannot be caught
at compile time. These errors should, as early as possible, throw an exception to prevent the invalid usage from making
it out of the development phase.

`c#
_object.CallMeAfterA(); // throws InvalidOperationException
_object.A();
`

User errors originate from externally sourced input to the library, such as payloads from Discord, or data from the end
user provided in a method call. These errors typically involve Remora.Discord encountering data it is unable to parse,
data it is unfamiliar with, or data violating some form of constraint. The primary distinction from programmer errors
is that these issues may appear frequently or nondeterministically, usually due to the end user varying their input.

```c#
var result = _object.PerformPotentiallyFailingAction();
if (result.IsSuccess)
{


…





}

In all cases, this category of errors should result in an unsuccessful return type being returned by the callee.

Environment errors stem from indirect problems; network outages, disk space, memory runout, etc. While in their own
category due to their unpredictability, they are treated and reported the same way as user errors.

### 1.3 True Asynchronicity and Concurrency
Remora.Discord aims to be truly asynchronous from the ground up, respecting and utilizing established best practices for
C# and the TPL. Furthermore, it aims to be concurrent, allowing end users to react to and perform actions upon many
incoming events at once.

Everything that Remora.Discord provides to the end user which involves some form of either IO- or CPU-bound work is
presented as a task, and it assumes everything a user wishes to perform in registered callbacks or customized services
may become IO or CPU bound.

Any asynchronous operation is also designed to be cancellable, allowing clean terminations of processes and units of
work.

## 2. Structure
The library is structured into three main parts - the abstractions, the concrete reference implementations, and a
high-level layer.

At its core, the library exposes nothing but abstract interfaces without any implementations behind
them, serving only as a common and basic 1:1 mapping to the Discord API (with some allowances made for C#-ification of
data types). This abstraction layer has no external dependencies and no business logic whatsoever.

On top of that, a concrete reference implementation is defined, where the abstraction layer is used to build a base
library that actually does the work against the real API - serializing JSON, mapping properties, setting up websockets,
communicating over HTTP, etc; this library serves as the default implementation for any consumers that make use of the
abstractions in their projects.

Finally, a high-level layer utilizes the default implementation to provide a more consumer-friendly and C#-oriented API
for interacting with Discord - caching, setting nicknames, sending messages, joining servers, etc. This high-level layer
also provides an abstraction layer; this is what consumers should primarily use.

This structure enables Remora.Discord to first and foremost define a de facto C# mapping of the Discord API that any
library can implement, and end user applications will not have to adapt or be rewritten to support specific libraries.
Beyond that usage potential, Remora.Discord also takes the role of an implementer and provides a usable backend for the
abstractions.

## 3. How to Contribute
To contribute to the library, start by browsing open issues and seeing if anything catches your eye & interest. If it
does, fork the project (if you haven’t already) and create a separate branch for your changes. Open a pull request early
and claim the issue, then begin working. Following the goal guidelines and input from other community members, finalize
your changes into a state where you’re happy with them, then request a review and merge from a maintainer.

Once your pull request clears the review phase, it’ll be merged. If any changes are necessary, you will be alerted
during the review phase and a maintainer will work with you to ensure your changes are in line with the library’s goals
and up to snuff.

Generally, code at the review phase is expected to fulfill the following requirements; that is, that it:



	Compiles. Code that does not compile will instantly fail code review.


	Follows the library’s syntax standards. In most cases, the compiler will yell at you if you do something
incorrectly. If not, a maintainer will most likely catch it during review and send it back so you can fix it.


	Has unit tests. If your contribution adds code that is uncovered by tests, you are expected to also write tests for
it that has as high a coverage as is realistically possible.


	Passes all tests. If you have failing unit tests, you must correct either your changes or the tests to pass and
appropriately test the changes.


	Follows the library goals. See the goals above; this is a “soft” requirement, in that there are no hard rules - it’s
the spirit of the goals that matters. If a maintainer believes that something is implemented contrary to the goals,
they will alert you during the review phase, or earlier if they’ve noticed by themselves.







## 4. Tips & Tricks
In order to more quickly write code that’s in line with the library standards, consider applying the following tips &
tricks while developing.



	Fail fast, fail often. If your code takes an input, verify it as early as possible and return an error (or throw, if
appropriate) as quickly as you can. If you call a method that has failure potential, always check the results.


	Minimize indentation. Keep things as flat and linear as you can, avoiding deep nesting. Invert conditionals where
possible; prefer if (!condition) and returning over if (condition) and performing actions inside the scope.


	Avoid throwing exceptions. Exceptions should only be used for programmer errors, as defined in [Goals](#1-goals).


	Avoid catching exceptions in inner scopes. If something does go wrong, it should bubble up as far as possible before
being caught and wrapped in a result.


	Never let exceptions bubble up into user code. While exceptions should bubble up as far as possible, it should
never reach user code. An uncaught exception that bubbles up into user code is considered a library bug.


	Formulate boolean parameters and properties as questions. Write ShouldDoThing instead of DoThing, IsDone
instead of Done, etc.


	Avoid returning null. null is to be considered an exceptional value, and should not be returned without a very
good reason. Similarly, null should not be accepted as a valid input unless explicitly intended.


	Use C#8’s nullability annotations. Be clear and concise with your intent.


	Don’t surprise the caller. Follow the principle of least astonishment - if a user would be surprised by what your
code does, it’s probably time to change it.


	Name methods and variables descriptively. It’s better to have a long and descriptive name than a short and
abbreviated one.













            

          

      

      

    

  

    
      
          
            
  
ShowInNavbar: false





            

          

      

      

    

  

    
      
          
            
  —
name: Bug Report
about: A bug has been found in the library
labels: bug
—


	<!–
	Based on an issue template from the Discord API documentation.





–>


	<!–
	Before opening a new issue, please search existing issues:  https://github.com/Nihlus/Remora.Discord/issues





–>

Description


	<!–
	Provide a clear and concise description of what the problem is.





–>

Steps to Reproduce


	<!–
	Provide clear and concise steps for us to reliably reproduce this issue.





–>

Expected Behavior


	<!–
	What is the behavior you expect to occur that is not?





–>

Current Behavior


	<!–
	What is the behavior you are currently seeing instead?





–>

Library / Runtime Information


	<!–
	Which version of the library is this happening on? Which version of the C# runtime?





–>



            

          

      

      

    

  

    
      
          
            
  —
name: Feature Request
about: Suggestions for new or different behavior in the library
labels: feature request
—


	<!–
	Based on a feature request template from the Discord API documentation.





–>


	<!–
	Before opening a new issue, please search existing issues:  https://github.com/Nihlus/Remora.Discord/issues





–>

Description


	<!–
	Provide a clear and concise description of what the feature request is.





–>

Why This is Needed


	<!–
	Provide a clear and concise explanation of what problem this solves for you.





–>

Alternatives Considered


	<!–
	There’s usually more than one way to solve a problem. What are some other alternatives you’ve considered, if any?





–>

Additional Details


	<!–
	Is there anything else you can add about this feature request?





–>



            

          

      

      

    

  

    
      
          
            
  
Title: Getting Started

This guide will walk you through setting up a basic ping-pong bot with
Remora.Discord, showing you the basic concepts of the library. At the end of the
tutorial, you should have the tools you need to start diving into more complex
bots and use cases.

There’ll be some assumptions made in this guide related to commands and terminal
environments - primarily, a system with bash is assumed, but the commands
should be easily transferable to any shell language.

## Creating your project
First of all, ensure that you have version 5.0 of the .NET Core SDK installed.
If you don’t have it yet, you can follow the instructions on [this][1] page for
your system.

Next up, we’ll create a simple console program that’ll serve as the host for our
bot - you can do this in many different ways, but we’ll stick to the terminal in
this guide. Feel free to use your favourite IDE instead, such as
[JetBrains Rider][2] or [VS Code][3].

`bash
dotnet new console -n "PingPong"
cd PingPong
dotnet add package Remora.Discord -v "3.0.33"
`

In the commands above, replace -v “3.0.33” with the release you’d like to
install (or remove it altogether if you’d like to use the latest stable
release).

Opening up the Program.cs file, we can start to set up our environment.

Since we’re writing a bot that’s going to respond to a simple command, we need a
connection to Discord’s realtime gateway. This is facilitated through the
DiscordGatewayClient class, as well as a bot account you’ll need to create
with Discord themselves. From this account, you’ll get a bot token, which the
gateway client will use to authenticate with the gateway.

For now, we’ll do everything in our Main method, but as your bot grows, it’s
almost a certainty that you’ll need to expand out to more types, files, and
namespaces.

The first thing we’ll do is create a CancellationTokenSource. This is going to
be our primary way of gracefully shutting down our bot, letting it notify the
Discord gateway that it’s disconnecting, and allowing it to shut down any
Responders that are currently running (more on those later).

For simplicity’s sake, we’ll set up our program to respond to CTRL+C at the
command line, and terminate the gateway client if it catches that keypress.

```csharp
static async Task Main(string[] args)
{

var cancellationSource = new CancellationTokenSource();

Console.CancelKeyPress += (sender, eventArgs) =>
{

eventArgs.Cancel = true;
cancellationSource.Cancel();

};

}

After this, we’ll set up a service provider. Remora.Discord uses [dependency
injection][4] throughout its codebase, and it’s through these systems we
register and access various types and services from the library.

```csharp
var botToken = “YOUR_TOKEN_HERE”;


	var services = new ServiceCollection()
	.AddDiscordGateway(() => botToken)
.BuildServiceProvider();





```

A quick note here - do not place your bot token in the source code of your
program when you write your real bot. It’s a massive security risk, and is only
done here for the sake of this guide. You should store your token outside of the
program in some kind of database or file (appsettings, plaintext file, etc) that
is not directly accessible from your source code.

With that out of the way, have a look at the snippet above. We register a set of
services from Remora.Discord via a convenience extension method called
AddDiscordGateway - this method adds everything you need to start using the
gateway client. It takes a single parameter, which is a function that returns
your bot token. In our case, that just references our local variable where we’ve
stored the token.

To get a gateway client instance, we can then request it from the service
provider we’ve created.

`csharp
var gatewayClient = services.GetRequiredService<DiscordGatewayClient>();
`

At this point, the gateway client is fully functional, but has not connected to
the gateway yet. To do this, we call the RunAsync method, and pass in the
cancellation token from the source we created earlier.

`csharp
var runResult = await gatewayClient.RunAsync(cancellationSource.Token);
`

Most things that deal with networking or external services have a fair chance to
fail, halt, or otherwise not complete perfectly. Remora.Discord is written to
try its damnedest to never let a potential runtime error bring down your
program, which means that any operation that could conceivably run into an issue
like that returns an IResult (or a type that implements that interface). This
is a safe and predictable wrapper around either a failed or a successful
operation - in the case of a failure, it’ll contain a human-readable message
that should help you understand what went wrong.

In the case of RunAsync, this is a GatewayConnectionResult, which can
contain some additional information about what caused the gateway client to stop
running.

Let’s implement some error handling next.

```csharp
if (!runResult.IsSuccess)
{


switch (runResult.Error)
{


case ExceptionError exe:
{


log.LogError
(


exe.Exception,
“Exception during gateway connection: {ExceptionMessage}”,
exe.Message




);

break;




}
case GatewayWebSocketError:
case GatewayDiscordError:
{


log.LogError(“Gateway error: {Message}”, runResult.Error.Message);
break;




}
default:
{


log.LogError(“Unknown error: {Message}”, runResult.Error.Message);
break;




}




}




}

Console.WriteLine(“Bye bye”);
```

Under normal circumstances, the gateway client will gracefully handle errors and
try to keep you connected to the gateway (either by reconnecting and resuming,
or by creating a new session) until you ask it to turn off via the cancellation
token provided to RunAsync. If runResult isn’t successful, you can be fairly
certain something outside of normal operation has happened - either it’s a
programming error on the part of the library, or something that’s made the
gateway unable or unwilling to continue trying to connect to the gateway. In
general, if the error is recoverable, Remora.Discord will try to fulfill your
requests until it can no longer justify any further efforts (often, this means
some sort of timeout or max number of retries).

At this point, you should be able to run the program and see your bot come
online in Discord. Hooray! If you want to see an overview of what the gateway
client is doing, you can configure a logging provider in the service provider -
AddConsole from Microsoft.Extensions.Logging.Console is usually a good
choice for simple projects. Adding logging will produce some output similar to
the following.

```
info: Remora.Discord.Gateway.DiscordGatewayClient[0]


Retrieving gateway endpoint…





	info: Remora.Discord.Gateway.DiscordGatewayClient[0]
	Connecting to the gateway…



	info: Remora.Discord.Gateway.DiscordGatewayClient[0]
	Creating a new session…



	info: Remora.Discord.Gateway.DiscordGatewayClient[0]
	Connected.





```

Now, in its current state, our bot doesn’t do much of anything. Sure, it runs
and connects, but that’s no fun! Let’s add a simple Responder that can - as
the name suggests - respond to events from Discord’s gateway.

Responders are defined as any class that implements one or more IResponder<T>
interfaces, where T is an event from the Discord gateway. If the gateway
client gets an event that one or more responders are interested it, it will
instantiate them and dispatch it to the responders, letting them handle it on
their own.

A responder can take as little or as much time as it needs to handle an event
without affecting the gateway - they’re entirely separate systems, save for the
fact that they also share the cancellation token with the gateway client.

Let’s create our responder now.


	```csharp
	public class PingPongResponder : IResponder<IMessageCreate>






{

```

This responder will only respond to IMessageCreate events from the gateway -
that is, events that contain information about a message someone has posted, be
they user or bot. You can implement as many IResponder<T> interfaces as you
like, and the responder will react to them all.

One thing to note is that a responder is not persistent - that is, it is not the
same instance that responds to the events, even events of the same type. The
responder is what’s called a Scoped service in DI parlance, and each event
from the gateway carries its own scope. This means that if you want to retain
information between events, you’ll need to outsource that to some other type -
most likely registered as a Singleton, or Scoped in an outer scope.

The IResponder<T> interface is relatively simple, only defining a single
method.

```csharp
public async Task<Result> RespondAsync
(


IMessageCreate gatewayEvent,
CancellationToken ct = default





)








}

Here, we can see the event coming in, and a type that implements IResult
rearing its head again. Responders, much like any user-facing operation, can
fail! Maybe it can’t find some resource it needs, or maybe something couldn’t be
parsed properly - anything that results in the responder being unable to finish
its task should result in a failed result being returned.

We can also see that the cancellation token from earlier is available to us -
this is the same token that we passed to RunAsync, and we should respect it.
If cancellation has been requested, we should bail out with a failed result as
soon as we can.

Now, our command will be very simple, and won’t really be much more than a
direct match against the message contents, but it gets the point across. In the
future, we’ll have a proper command framework available, but that’s outside of
the scope of this quickstart.

```csharp
if (gatewayEvent.Content != “!ping”)
{

return Result.FromSuccess();

}

var embed = new Embed(Description: “Pong!”, Colour: Color.LawnGreen);
```

If the message isn’t something we’re interested in, we return a successful
result - after all, if we just don’t care, it’s hardly a failure of our own
code. If the message does match, however, we’d like to send an embed back to the
user with a pong to show that we got their ping. new’ing up an embed is simple
enough, but we need to send it back to the user in the same channel, too.

This is done through Discord’s REST API, which we also have access to. This,
however, we need to explicitly request through - you guessed it - dependency
injection. Let’s jump out of the response method for a moment, and implement a
constructor that takes the API we’re interested in.

```csharp
private readonly IDiscordRestChannelAPI _channelAPI;

public PingPongResponder(IDiscordRestChannelAPI channelAPI)
{

_channelAPI = channelAPI;

}

Every section of Discord’s REST API is available in this form, as an interface
defining the various endpoints. Back in our responder method, we can now use the
channel API.

```csharp
if (gatewayEvent.Content != “!ping”)
{


return Result.FromSuccess();




}

var embed = new Embed(Description: “Pong!”, Colour: Color.LawnGreen);
var replyResult = await _channelAPI.CreateMessageAsync
(


gatewayEvent.ChannelID,
embeds: new[] { embed },
ct: ct




);


	return !replyResult.IsSuccess
	? Result.FromError(replyResult)
: Result.FromSuccess();





```

The CreateMessageAsync method takes a lot of various parameters, but we’re
really only interested in the embed and channel parameters right now -
therefore, we can skip over the other optional parameters and just pass in the
ones we care about.

With that done, our responder is implemented and ready to go! There’s only one
final thing to do before we can run our bot and see it in action - we need to
make it available to the gateway client via - say it with me - dependency
injection!

Back in our Main method, where we configure our services, we’ll make a small
addition.

```csharp
var responderService = new ResponderService();
var services = new ServiceCollection()


.AddDiscordGateway(_ => botToken)
.AddResponder<PingPongResponder>(responderService)
.BuildServiceProvider();




```

And that’s it! The AddResponder<T> method registers the responder as a scoped
service for all of the IResponder<T> interfaces it implements. The responder
service is a supporting type for event dispatching, and keeps track of which
responders are registered for which events.

Now, running your bot, going into Discord, and running your command should net
you the following.

![Ping, Pong!][5]

Congratulations! You’ve written your first bot using Remora.Discord, and
familiarized yourself with the basic concepts of the library. Hopefully, this
should set you on the right path, and give you the tools you need to create
great bots with the library.

If you’re interested in looking at some bots authored by the community or by the
library author(s), have a look at the [samples][6] in the repository. If you
have any questions, please don’t hesitate to ask, or open an issue in the main
repo.

Good luck!

[1]: https://docs.microsoft.com/en-us/dotnet/core/install/
[2]: https://www.jetbrains.com/rider/
[3]: https://code.visualstudio.com/
[4]: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.1
[5]: images/ping-pong.png
[6]: https://github.com/Nihlus/Remora.Discord/tree/master/Samples

Title: Using Undocumented Features

The unfortunate reality of using the Discord API is that, while the online
documentation is extensive, it is not exhaustive. Discord often exposes
undocumented fields, endpoints, and data structures that may still be of use to
developers, even though they aren’t ready, finished, or thoroughly documented.

Remora has a few ways for you to access these undocumented features, but beware!
As with any unstable API surface, things may break from one second to the next
without warning.

Data
Undocumented Fields
If you want to implement access to an undocumented field on an existing type,
create a new record that inherits from the existing model, and register it with
the DI system.

```cs
public record SomeExistingDataWithMoreStuff(int Existing, int Additional)


: SomeExistingData(Existing);




```

Note that to override an existing data model, you have to register it after
Remora’s own setup.

```cs
// Add the base types from Remora
var serviceCollection = new ServiceCollection()


.AddDiscordGateway(_ => botToken)
.AddDiscordCommands(true);




// Add overriding data models
serviceCollection.Configure<JsonSerializerOptions>
(


options =>
{


options.AddDataObjectConverter<ISomeExistingData, SomeExistingDataWithMoreStuff>();




}





);

You can also specialize various parts of the data model when registering it,
such as property names (which is useful for C#-ifying naming of boolean
properties) and their type converters.

### Undocumented Data Structures
Any undocumented data structure can be added to Remora externally, and treated
as if it were bundled with Remora using the existing DI system.

Suppose we have the following undocumented data:

```json
{

“some_name”: 10

}

You would then model and register the following structures.

```cs
public interface ISomeData
{


int SomeName { get; }




}

public record SomeData(int SomeName) : ISomeData;
```

Registration is the same as if you were implementing an undocumented field, but
you may register it before Remora’s own types.

Gateway
Undocumented Events & Commands
Any undocumented event or command can be added to Remora the same way as you
would add a new undocumented data structure. However, you only need to model the
data portion of the event or command.

Suppose we have the following undocumented event:

```json
{


“t”: “SOME_UNDOCUMENTED_EVENT”,
“s”: 4,
“op”: 0,
“d”: {


“some_name”: 10




}







}

You would then model and register the following event data. Note that event
names must match the interface name you create - that is, if the event is
named SOME_EVENT, your interface must be named ISomeEvent.

```cs
public interface ISomeUndocumentedEvent
{

int SomeName { get; }

}

public record SomeUndocumentedEvent(int SomeName) : ISomeUndocumentedEvent;
```

## REST
Features that relate to the REST API is customized through one of two methods.

The first is the DiscordHttpClient type, which can be accessed and used
through DI. It’s a named, transient HttpClient, which takes care of minutia
like authorization headers and respecting rate limits for you. You would mainly
use this type when you want to make requests to completely undocumented
endpoints, or to take complete control over a call to a known endpoint.

```cs
public class Somewhere
{

private readonly DiscordHttpClient _client;

public Somewhere(DiscordHttpClient client)
{

_client = client;

}

}

The second is through the concrete implementations of the API interfaces, which
allow you to perform smaller tweaks or changes to existing API methods, such as
adding headers or JSON payload fields.

Undocumented Endpoints
To access an undocumented endpoint, you may use the DiscordHttpClient directly
to make any kind of HTTP request, similar to how you might use a normal
HttpClient. All requests made by this client are prepended with the most
recently versioned Discord API base endpoint, which typically looks like this:
https://discord.com/api/v9/. Therefore, you should only use relative endpoints
when making requests.

`cs
var result = await _client.GetAsync<ISomeData>($"somewhere/{someId}/data");
`

Refer to the existing implementations of endpoints in the library for examples
of how to add JSON parameters, HTTP headers, or similar data.

Undocumented Parameters & Headers
If you want to provide additional data to an existing endpoint, such as JSON
parameters, HTTP headers, or query string parameters, you can easily add
customizations to all requests made by the API within a particular scope. This
feature is only available to you when you inject the concrete implementation of
an API category, however, and not through the interface.

This means that if you want to, for example, send an additional JSON field when
sending a message, you would need to inject DiscordRestChannelAPI and not
IDiscordRestChannelAPI.

This is useful when an endpoint is discovered to allow undocumented parameters,
or metadata headers such as X-Audit-Log-Reason.

Once you have the concrete implementation available to you, creating a
customization is simple.
```cs
using (_ = _api.WithCustomization(r => r.WithJson(json => json.WriteString(“name”, “value”))))
{


// This call will now have “name”: “value” in its JSON payload, in addition
// to the normal data.
var result = await _api.SomeEndpointAsync();




}

// This call will not have any additional data
var result = await _api.SomeEndpointAsync();
```

The customization uses the same types and logic for configuring a request’s
parameters, methods, and headers as implementing a custom endpoint, so if you
learn one you should have no trouble using the other.

Multiple customizations may be in effect at the same time, and will be applied
in the order you create them. A customization is removed from the client when it
is disposed.

Remora.Discord

Remora.Discord is a C# library for interfacing with the Discord API. It is built
to fulfill a need for robust, feature-complete, highly available and concurrent
bots.

Want to chat with users and developers? Come join us!

[![Discord Server][5]][4]

Table of Contents
1. [Features](#1-features)
2. [Goals](#2-goals)

	[Correctness](#21-correctness)

	[Robustness](#22-robustness)

	[True Asynchronicity and Concurrency](#23-true-asynchronicity-and-concurrency)

	
	[Status](#3-status)
	
	[Gateway](#31-gateway)

	[REST](#32-rest)

	[Installation](#4-installation)

	[Usage](#5-usage)

	[Contributing](.github/CONTRIBUTING.md)

	## 1. Features
	
	Extensive API coverage - does anything and everything you need

	Modern and active - uses contemporary technologies and usage patterns

	Fully asynchronous - do many things at once at scale

	Modular - swap parts of the library with your own implementations at will

	Integrated - slash commands, traditional interfaces, or stateless bots

2. Goals
Remora.Discord originates from the original author’s frustration with many
inconsistencies in various APIs in the C#/Discord ecosystem, both in relation to
the Discord API itself and the language usage within existing solutions.

Therefore, Remora.Discord defines the following three goals that guides its
development. These are shorter summaries - to read the full goal definitions and
see examples, please refer to the [Contributing Guidelines][2].

2.1 Correctness
Correctness, in the context of Remora.Discord, means that the API available to
the end user should as faithfully and accurately represent the actual reality of
data presented to or from an API; that is, no data or structure of data should
meaningfully change between the library receiving it and the user accessing it.

2.2 Robustness
Robustness refers to a focus on never allowing problems originating from user
data or real-life runtime conditions to bring down or otherwise corrupt the end
user’s application. The end user should be confident that, should an error
arise, they will be aware of the fault potential before even compiling the
application.

2.3 True Asynchronicity and Concurrency
Remora.Discord aims to be truly asynchronous from the ground up, respecting and
utilizing established best practices for C# and the TPL. Furthermore, it aims to
be concurrent, allowing end users to react to and perform actions upon many
incoming events at once.

3. Status
Remora.Discord is currently fully usable, and has been released for public
consumption.

3.1 Gateway
The Discord Gateway API (v9) is fully implemented. The gateway client can
connect, heartbeat, reconnect, resume, receive events, and send commands.

3.2 REST
The Discord REST API (v9) is fully implemented.

3.3 Voice
The Discord Voice API is not implemented. If you’d like to contribute to the
library, this would be an excellent start.

4. Installation
Remora.Discord’s primary distribution format is via [nuget][3] - get it there!

If you wish to use or develop the library further, you will need to compile it
from source.

`bash
git clone git@github.com:Nihlus/Remora.Discord.git
cd Remora.Discord
dotnet build
dotnet pack -c Release
`

5. Usage
Up-to-date documentation for the API, as well as a quickstart guide, is
available online at [the repository pages][1].

Please refer to the [Samples][7] for community-created example bots.

5.1 Versioning
A note on versioning - Remora.Discord uses SEMVER 2.0.0, which, in short, means

Given a version number MAJOR.MINOR.PATCH, increment the:

	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a backwards compatible manner,
and

	PATCH version when you make backwards compatible bug fixes.

Due to the rapidly- and often-changing nature of Discord’s API, this means that
changes to the MAJOR component of the version in components of the library may
change almost every new release. Typically, new functionality in Discord’s API
means that new fields are added, types of fields change, or parameters sent to
endpoints change.

Generally, these changes only affect the API and API.Abstractions packages -
these will often increment their MAJOR versions. Dependant packages - such as
Gateway or Rest - will update together with these packages, but unless their
public API changes as a result, it will be considered a PATCH upgrade.

The consequences of this is that you may see source-level breakages when
upgrading from one minor version to the next. While undesirable, it is an effect
of Discord’s uneven and inaccurate update cycle. Because of the way C# handles
dependencies, however, it’s unlikely that this would affect anything outside of
normal development - as such, it’s been deemed an acceptable degradation.

5.2 Releases
Remora.Discord does not follow a set release cycle, and releases new versions
on a rolling basis as new features of the Discord API are implemented or
documented.

As a bot developer, you should check in every now and then to see what’s
changed - changelogs are released along with tags here on Github, as well as in
the individual package descriptions.

Whenever a new set of packages are released, the commit the releases were built
from is tagged with the year and an incremental release number - for example,
2021.1.

6. Contributing
See [Contributing][2].

Thanks
Icon by [Twemoji][6], licensed under CC-BY 4.0.

[1]: https://nihlus.github.io/Remora.Discord/
[2]: .github/CONTRIBUTING.md
[3]: https://www.nuget.org/packages/Remora.Discord/
[4]: https://discord.gg/tRJbg8HNdt
[5]: https://img.shields.io/static/v1?label=Chat&message=on%20Discord&color=7289da&logo=discord
[6]: https://twemoji.twitter.com/
[7]: https://github.com/Nihlus/Remora.Discord/tree/master/Samples

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

